Sunday, May 31, 2020

Why is there still no vaccine against coronavirus?

Must read

Friends pay tribute to Louise Smith, 16, as murder detectives find body in woods

Police investigating the disappearance of 16-year-old Louise Smith were today searching a flat belonging to a married couple where she had been living. ...

Morrison government reveals JobKeeper ‘error’ as global COVID-19 cases surpass 5.1 million, Australian death toll stands at 101

So often it's the rats and mice that change the face of history, writes Elizabeth Farrelly. The sword glint that triggers the battle that...

Heartthrob Paul Mescal is spotted on a shirtless jog wearing his famous chain

Phwoar-mal People! Paul Mescal is spotted on a shirtless jog wearing his...

Martina Bécares Palacios

Updated:03/28/2020 02: 28h

save

In these days when the numbers of affected by COVID-19 They do not stop growing, and even the Ice Palace in Madrid has had to be converted into a morgue to provisionally accommodate the coffins of the victims of the capital, a recurring question that we all ask ourselves is: How long will it take for the vaccine to end the pandemic? A question that can be extended to other infectious diseases such as Ebola, malaria or AIDS, against which it has been fighting for much longer and yet they still do not have an effective vaccine.

The development of a vaccine is a complex process. To begin, it is necessary to start with prior knowledge about the biological and immunological characteristics of the pathogen -virus, bacteria, or parasite-. Next, the vaccine candidate would have to be synthesized and tests carried out to evaluate its efficacy. Finally, if the previous steps have been successful, all legal requirements must be met when they are put into circulation.

In a way, the process can be compared to a war against the pathogen that requires a careful strategy to achieve final victory.

Know the enemy

Throughout evolution, pathogens have developed multiple weapons and strategies to evade the host’s immune response – ours. Sometimes they have proteins that allow them to suppress the immune system, or to trick it into causing our body to develop ineffective responses. Other times, their strategy is based on a constant mutation capacity that allows them to escape again and again from our defenses, as it happens with the influenza virus.

A detailed knowledge of the biology of the pathogen, the structure of its proteins and the clinical characteristics of the associated disease decisively influence the success of the vaccine. In cases like the one in question, in which the adversary we face is newPrevious studies on similar microorganisms may be essential.

Choose where to aim

The choice of the antigen or antigens – that is, the pathogen proteins that are included in the vaccine – is an essential aspect in the design of the attack strategy.

In the XVIII century, Edward Jenner laid the foundations for vaccination using an entire microorganism as an immunogen, giving rise to one of the great milestones of medicine, the smallpox eradication. But this strategy is neither possible nor safe for all infectious diseases, and today there are different types of vaccines.

Currently calls are imposed «subunit vaccines», In which an antigen of the pathogen is chosen against which to direct the response. This choice is not easy, since it is a basically empirical process: although there are some tools to predict the immunogenicity of a molecule, and knowing the pathogen well is helpful, you always have to prove what works and what doesn’t.

An added complication is that, normally, the vaccine recipe also includes adjuvants– compounds that favor the induction of a stronger response against the antigen. Choosing the right combination of antigen and adjuvant requires testing. Y this involves time, something very valuable in situations like today.

Evaluate the strategy

Once the attack strategy is chosen, it is necessary to check if it is effective. To do this, you must first test on animals. On the one hand, the induction of the immune response is evaluated after pricking the vaccine prototype in the experimental animal, studying the type of immune response that is induced, and its ability to neutralize the enemy microorganism.

To assess the results, you should have prior knowledge that correlates the immunological parameters measured in the laboratory with the degree of protection conferred on the patient. This implies having data obtained from patients who have overcome the disease. And again, this takes time.

Another possibility is to have animal models that develop the disease to puncture the vaccine and assess protection against subsequent inoculation of the pathogen. These animal models of disease are extremely useful, but their development requires effort and, of course, more time.

Small battles first, then war

Once the animal tests have been passed, it is time to evaluate the safety and efficacy in humans: clinical trials. The safety of the vaccine candidate is first assessed in a small group of healthy volunteers – phase I trials -, and then they move on to larger groups in which to test the appropriate doses and guidelines – phase II.

If all goes well, the efficacy of the vaccine is evaluated in an even greater number of individuals –phase III–. After this process, the vaccine can begin to be produced. And it must be done in adequate quantities and ensuring the high standards of quality and legality required by the pharmaceutical industry. Each step must have the approval of the competent authorities to ensure everyone’s safety.

In emergency situations like the current one, these trials can be accelerated, Clear. But surely not as much as we would like, since it is not necessary to forget that they constitute a chain: if we skip one step it is more probable that we fail in the next one.

Although the saying goes that Zamora was not won in an hour, in the end it was won. The same happens with the development of vaccines: although in situations like the current one the apparent slowness of the process can be frustrating, with time and effort it is possible. To check it, just look at our vaccination calendar.

Martina Bécares Palacios is a postdoctoral researcher and honorary professor in the Department of Preventive Medicine, Public Health and Microbiology at the Autonomous University of Madrid.

This article was originally published in The Conversation.

.

More articles

LEAVE A REPLY

Please enter your comment!
Please enter your name here

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Latest article

Friends pay tribute to Louise Smith, 16, as murder detectives find body in woods

Police investigating the disappearance of 16-year-old Louise Smith were today searching a flat belonging to a married couple where she had been living. ...

Morrison government reveals JobKeeper ‘error’ as global COVID-19 cases surpass 5.1 million, Australian death toll stands at 101

So often it's the rats and mice that change the face of history, writes Elizabeth Farrelly. The sword glint that triggers the battle that...

Heartthrob Paul Mescal is spotted on a shirtless jog wearing his famous chain

Phwoar-mal People! Paul Mescal is spotted on a shirtless jog wearing his...

Pakistan plane crash: Shocking footage shows moment aircraft fell from the sky – World News

Chilling footage captures the moment the Pakistan International Airlines (PIA) plane fell from the sky before it crashed into homes...