DYRK1A antagonists rescue degeneration and behavioural deficits of in vivo models based on amyloid-β, Tau and DYRK1A neurotoxicity

  • Alzheimer’s disease facts and figures. Alzheimers Dement 12(4), 459–509 (2016).

    Google Scholar 

  • Selkoe, D. J. & Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 8(6), 595–608 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Querfurth, H.W., & LaFerla, F.M. Alzheimer’s disease. N. Engl. J. Med. 362 (2010).

  • Aldrich, M. S. et al. Sleep abnormalities in progressive supranuclear palsy. Ann. Neurol. 25(6), 577–581 (1989).

    CAS 
    PubMed 

    Google Scholar 

  • Vitiello, M. V. & Borson, S. Sleep disturbances in patients with Alzheimer’s disease: epidemiology, pathophysiology and treatment. CNS Drugs 15(10), 777–796 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Chawla, J. K., Burgess, S. & Heussler, H. The impact of sleep problems on functional and cognitive outcomes in children with Down syndrome: A review of the literature. J. Clin. Sleep Med. 16(10), 1785–1795 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Musiek, E.S., et al., Circadian rest-activity pattern changes in aging and preclinical alzheimer disease. JAMA Neurol. (2018).

  • Musiek, E. S. & Holtzman, D. M. Mechanisms linking circadian clocks, sleep, and neurodegeneration. Science 354(6315), 1004–1008 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bertram, L., Lill, C. M. & Tanzi, R. E. The genetics of Alzheimer disease: Back to the future. Neuron 68(2), 270–281 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Dolan, P. J. & Johnson, G. V. The role of tau kinases in Alzheimer’s disease. Curr. Opin. Drug Discov. Devel 13(5), 595–603 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferrer, I. et al. Constitutive Dyrk1A is abnormally expressed in Alzheimer disease, Down syndrome, Pick disease, and related transgenic models. Neurobiol. Dis. 20(2), 392–400 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Arendt, T., Stieler, J. T. & Holzer, M. Tau and tauopathies. Brain Res. Bull. 126(Pt 3), 238–292 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Kellogg, E.H., et al., Near-atomic model of microtubule-tau interactions. Science (New York, N.Y.) 360(6394), 1242–1246 (2018).

  • Bekris, L. M. et al. Genetics of Alzheimer disease. J. Geriatr. Psychiatry Neurol. 23(4), 213–227 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Selkoe, D. J. Preventing Alzheimer’s disease. Science 337(6101), 1488–1492 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Soeda, Y. & Takashima, A. New insights into drug discovery targeting tau protein. Front. Mol. Neurosci. 13, 590896–590896 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McGowan, E., Eriksen, J. & Hutton, M. A decade of modeling Alzheimer’s disease in transgenic mice. Trends Genet. 22(5), 281–289 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Van Dam, D. & De Deyn, P. P. Animal models in the drug discovery pipeline for Alzheimer’s disease. Br. J. Pharmacol. 164(4), 1285–1300 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Buhl, E., Higham, J.P., & Hodge, J.J.L. Alzheimer’s disease-associated tau alters Drosophila circadian activity, sleep and clock neuron electrophysiology. Neurobiol. Dis. 104507 (2019).

  • Cassar, M. & Kretzschmar, D. Analysis of amyloid precursor protein function in drosophila melanogaster. Front. Mol. Neurosci. 9, 61 (2016).

    See also  New point of attack discovered against particularly aggressive forms of cancer - healing practice

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, K. F. et al. The central molecular clock is robust in the face of behavioural arrhythmia in a Drosophila model of Alzheimer’s disease. Dis. Model Mech. 7(4), 445–458 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chiang, H. C. et al. PI3 kinase signaling is involved in Abeta-induced memory loss in Drosophila. Proc. Natl. Acad. Sci. U S A 107(15), 7060–7065 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Higham, J.P., et al., Restoration of olfactory memory in drosophila overexpressing human Alzheimer’s disease associated tau by manipulation of L-Type Ca2+ channels. Front. Cell. Neurosci. 13(409) (2019).

  • Higham, J.P., et al., Alzheimer’s Disease Associated Genes Ankyrin and Tau Cause Shortened Lifespan and Memory Loss in Drosophila. Frontiers in Cellular Neuroscience, 2019. 13(260).

  • Papanikolopoulou, K. & Skoulakis, E. M. Temporally distinct phosphorylations differentiate Tau-dependent learning deficits and premature mortality in Drosophila. Hum. Mol. Genet. 24(7), 2065–2077 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Ping, Y. et al. Linking Aβ42-Induced Hyperexcitability to Neurodegeneration, Learning and Motor Deficits, and a Shorter Lifespan in an Alzheimer’s Model. PLoS Genet. 11(3), 1–25 (2015).

    Google Scholar 

  • Tabuchi, M. et al. Sleep interacts with abeta to modulate intrinsic neuronal excitability. Curr. Biol. 25(6), 702–712 (2015).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wittmann, C. W. et al. Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science 293(5530), 711–714 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Herault, Y. et al. Rodent models in Down syndrome research: impact and future opportunities. Dis. Model Mech. 10(10), 1165–1186 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lott, I. T. & Dierssen, M. Cognitive deficits and associated neurological complications in individuals with Down’s syndrome. Lancet Neurol. 9(6), 623–633 (2010).

    PubMed 

    Google Scholar 

  • Malak, R. et al. Delays in motor development in children with down syndrome. Med. Sci. Monit. 21, 1904–1910 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lovos, A. et al. Circadian sleep-activity rhythm across ages in down syndrome. Brain Sci. 11(11), 1403 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wiseman, F. K. et al. A genetic cause of Alzheimer disease: Mechanistic insights from Down syndrome. Nat. Rev. Neurosci. 16(9), 564–574 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zigman, W. B. Atypical aging in Down syndrome. Dev. Disabil. Res. Rev. 18(1), 51–67 (2013).

    PubMed 

    Google Scholar 

  • O’Leary, L., et al., Early death and causes of death of people with Down syndrome: A systematic review. J. Appl. Res. Intellect. Disabil. (2018).

  • Kay, L. J., Smulders-Srinivasan, T. K. & Soundararajan, M. Understanding the multifaceted role of human down syndrome kinase DYRK1A. Adv. Protein Chem. Struct. Biol. 105, 127–171 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Duchon, A. & Herault, Y. DYRK1A, a dosage-sensitive gene involved in neurodevelopmental disorders, is a target for drug development in down syndrome. Front. Behav. Neurosci. 10, 104 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Arbones, M. L. et al. DYRK1A and cognition: A lifelong relationship. Pharmacol. Ther. 194, 199–221 (2019).

    See also  Corona in 24 hours | An increase in infections .. No new symptoms of HIV

    CAS 
    PubMed 

    Google Scholar 

  • Garcia-Cerro, S. et al. Normalizing the gene dosage of Dyrk1A in a mouse model of Down syndrome rescues several Alzheimer’s disease phenotypes. Neurobiol. Dis. 106, 76–88 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Ahn, K. J. et al. DYRK1A BAC transgenic mice show altered synaptic plasticity with learning and memory defects. Neurobiol. Dis. 22(3), 463–472 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Wegiel, J. et al. Link between DYRK1A overexpression and several-fold enhancement of neurofibrillary degeneration with 3-repeat tau protein in Down syndrome. J. Neuropathol. Exp. Neurol. 70(1), 36–50 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Woods, Y. L. et al. The kinase DYRK phosphorylates protein-synthesis initiation factor eIF2Bepsilon at Ser539 and the microtubule-associated protein tau at Thr212: potential role for DYRK as a glycogen synthase kinase 3-priming kinase. Biochem. J. 355(Pt 3), 609–615 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Azorsa, D. O. et al. High-content siRNA screening of the kinome identifies kinases involved in Alzheimer’s disease-related tau hyperphosphorylation. BMC Genomics 11(1), 25 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Melchior, B. et al. Tau pathology reduction with SM07883, a novel, potent, and selective oral DYRK1A inhibitor: A potential therapeutic for Alzheimer’s disease. Aging Cell 18(5), e13000 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, B. et al. Recent advances in the design, synthesis, and biological evaluation of selective DYRK1A inhibitors: a new avenue for a disease modifying treatment of Alzheimer’s?. ACS Chem. Neurosci. 3(11), 857–872 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Velazquez, R. et al. Chronic Dyrk1 inhibition delays the onset of AD-like pathology in 3xTg-AD mice. Mol. Neurobiol. 56(12), 8364–8375 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Kim, H. et al. A chemical with proven clinical safety rescues Down-syndrome-related phenotypes in through DYRK1A inhibition. Dis. Model Mech. 9(8), 839–848 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hong, S. H. et al. Minibrain/Dyrk1a regulates food intake through the Sir2-FOXO-sNPF/NPY pathway in Drosophila and mammals. PLoS Genet 8(8), e1002857 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, C. K. et al. Activity-dependent facilitation of Synaptojanin and synaptic vesicle recycling by the Minibrain kinase. Nat. Commun. 5, 4246 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lowe, S. A., Usowicz, M. M. & Hodge, J. J. L. Neuronal overexpression of Alzheimer’s disease and Down’s syndrome associated DYRK1A/minibrain gene alters motor decline, neurodegeneration and synaptic plasticity in Drosophila. Neurobiol Dis. 125, 107–114 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Branca, C. et al. Dyrk1 inhibition improves Alzheimer’s disease-like pathology. Aging Cell 16(5), 1146–1154 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nguyen, T. L. et al. Correction of cognitive deficits in mouse models of Down syndrome by a pharmacological inhibitor of DYRK1A. Dis. Model Mech. 11(9), 1 (2018).

    Google Scholar 

  • Hulme, C., & Foley, C. Small molecule inhibitors of DYRK/Clk and uses thereof. US Patent App., 2020. 16/586,536.

  • Hulme, C., Shaw, A.Y., & Dunckley, T. Small molecule inhibitors of DYRK1A and uses thereof. US Patent, 2020. 10,730,842.

    See also  "If we suddenly removed the pig sector from the system, our towns would fall"
  • Kerr, F. et al. Dietary restriction delays aging, but not neuronal dysfunction, in Drosophila models of Alzheimer’s disease. Neurobiol. Aging 32(11), 1977–1989 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buhl, E. et al. Effects of Eph/ephrin signalling and human Alzheimer’s disease-associated EphA1 on Drosophila behaviour and neurophysiology. Neurobiol. Dis. 170, 105752 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Papanikolopoulou, K. & Skoulakis, E. M. The power and richness of modelling tauopathies in Drosophila. Mol. Neurobiol. 44(1), 122–133 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Kosmidis, S. et al. Differential effects of Tau on the integrity and function of neurons essential for learning in Drosophila. J. Neurosci. 30(2), 464–477 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Watson-Scales, S. et al. Analysis of motor dysfunction in Down Syndrome reveals motor neuron degeneration. PLoS Genet. 14(5), e1007383 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Spires-Jones, T.L., & Hyman, B.T. The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron. 82 (2014).

  • Dissel, S. et al. Enhanced sleep reverses memory deficits and underlying pathology in Drosophila models of Alzheimer’s disease. Neurobiol. Sleep Circadian Rhythms 2, 15–26 (2017).

    PubMed 

    Google Scholar 

  • Arnes, M. et al. Role of tau protein in remodeling of circadian neuronal circuits and sleep. Front Aging Neurosci. 11, 320 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sterniczuk, R. et al. Characterization of the 3xTg-AD mouse model of Alzheimer’s disease: part 1 Circadian changes. Brain Res. 1348, 139–148 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Stevanovic, K. et al. Disruption of normal circadian clock function in a mouse model of tauopathy. Exp. Neurol. 294, 58–67 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Holth, J.K., et al., The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans. Science (2019).

  • Wang, Y. Y., Ma, W. W. & Peng, I. F. Screening of sleep assisting drug candidates with a Drosophila model. PLoS ONE 15(7), e0236318 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McCurry, S. M. et al. Characteristics of sleep disturbance in community-dwelling Alzheimer’s disease patients. J. Geriatr. Psychiatry Neurol. 12(2), 53–59 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Vitiello, M.V., Bliwise, D.L., & Prinz, P.N. Sleep in Alzheimer’s disease and the sundown syndrome. Neurology 42(7 Suppl 6), 83–93 (1992).

  • Volicer, L. et al. Sundowning and circadian rhythms in Alzheimer’s disease. Am. J. Psychiatry 158(5), 704–711 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Gerstner, J. R. & Yin, J. C. Circadian rhythms and memory formation. Nat. Rev. Neurosci. 11(8), 577–588 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Folwell, J. et al. Abeta exacerbates the neuronal dysfunction caused by human tau expression in a Drosophila model of Alzheimer’s disease. Exp. Neurol. 223(2), 401–409 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Hendricks, J. C. et al. Rest in Drosophila is a sleep-like state. Neuron 25(1), 129–138 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Leave a Comment

    This site uses Akismet to reduce spam. Learn how your comment data is processed.